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Equilibrium shapes of two-dimensional rotating configurations of uniform vortices 
are numerically calculated for two to eight corotating vortices. Additionally, a 
perturbation series is developed which approximately describes the vortex shapes. 
The equilibrium configurations are subjected to a linear stability analysis. This 
analysis both confirms existing results regarding point vortices and shows that finite 
vortices may destabilize via a new form of instability derived from boundary 
deformations. Finally, we examine the energetics of the equilibrium configurations. 
We introduce a new energy quantity called ‘excess energy’, which is particularly 
useful in understanding the constraints on the evolution of unstable near-equilibrium 
configurations. This theory offers a first glance a t  nonlinear stability. As an example, 
the theory explains some features of the merger of two vortices. 

1. Introduction 
A little more than a century ago, Thomson (1883) investigated the linear stability 

of corotating point vortices of equal strength. The vortices were equally spaced along 
the circumference of a circle. By perturbing the relative locations of the vortices, he 
found that six or fewer vortices are stable. The current study extends that of Thomson 
by examining the effect of finite vortex size. By a vortex, we mean a finite region 
of rotational fluid bounded by irrotational fluid in two-dimensional inviscid incom- 
pressible unbounded flow. We assume that an equilibrium state of the flow may 
consist of several identical regions of uniforrn vorticity whose boundaries are 
stationary when viewed from an appropriately rotating reference frame. By perturbing 
the boundaries of these finite-area vortices, we can determine their linear stability. 
In  the limit of small vortices, the results reduce to those of Thomson. 

We are generalizing Thornson’s problem because finite vortices are thought to 
provide a more realistic model of fluid flow than do point vortices. The assumption 
of constant-vorticity vortices results in an important and useful simplification of the 
solution of the Euler equations - the velocity field at any point in space depends only 
upon the locations of the vortex boundaries (or contours) and the jumps of vorticity 
across them. This velocity field then advects the contours to a new arrangement. Thus 
the problem effectively becomes one-dimensional. This simplification was originally 
pointed out by Deem & Zabusky (1978a, b), who called it ‘contour dynamics’. They 
calculated the shapes of certain translating or rotating vortex states (‘ V-states ’). 
Subsequently, numerous other researchers have taken an interest in the field. Steady 
solutions have been found by Pierrehumbert (1980) for two opposite-signed symme- 
trical vortices, Saffman & Szeto (1980) for two like vortices (duplicated in the present 
work), Pierrehumbert & Widnall (1981) for an infinite row of identical vortices, and 
Saffman & Schatzman (1982) for the von KarmBn vortex street (two opposite-signed 
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infinite rows of identical vortices). Saffman & Schatzman were also the first to 
examine the stability of constant-vorticity vortices. In the current study we will 
carefully detail how thc stability problem is set up and then solve for the stability 
of equilibrium configurations of corotating vortices. 

The present investigation may have some relevance to the dynamics of clusters of 
organized vortices in a free shear layer, where vortex fission and merger are 
commonplace events (see Christiansen & Zabusky 1973). Nonlinear calculations by 
Overman t Zabusky (1982) suggest that fission and merger result from complex 
nonlinear behaviour. Our linear calculations afford no hope of understanding these 
phenomena, but we will discuss a new energy theory which highly constrains 
nonlinear evolution. Dritschel (1985) examines the nonlinear evolution and stability 
of vortex configurations and shows that the current study’s energy theory is very 
useful in understanding nonlinear behaviour. 

We will consider equilibrium configurations of two to eight vortices. Section 2 
covers thedynamicsofpiecewise-constant vorticity distributions (‘ contour dynamics ’) 
and then describes a numerical algorithm used to compute equilibrium vortex 
boundary shapes. In  $3 we derive an approximate expression for the boundary shapes 
which is used to confirm the numerical results. Section 4 compares the approximate 
and exact solutions, and some peculiar properties of the exact solutions are indicated. 
We move to discuss linear stability - setting up the problem, simplifying it, and 
solving it - in 595-7. In  $8 we begin a discussion of energetics, where we announce 
a new and useful energy quantity. Section 9 points out the conserved global quantities 
in a two-dimensional fluid, while f 10 illustrates how these quantities constrain the 
nonlinear evolution of vortices. There we also postulate the fate of various relevant 
unstable vortex configurations. We try to connect the linear stability results and the 
energy theory in f 11, and then conclude in $ 12. 

2. The vortex boundary shapes 
2.1. Mathematical review of vortex motion 

In this subsection we review the equations governing the evolution of vorticity 
distributions in two dimensions and the special form attained by these equations when 
the vorticity is piecewise-constant. An equivalent derivation has been given by 
Zabusky, Hughes & Roberts (1979). For an unbounded fluid with a vorticity 
distribution u ( x ,  y) the streamfunction $(x, y) is given by 

$(x, y) = (2n)-’ I j d x ’  dy’ w ( d ,  y’) log r ,  (2.1) 

where r2 = ( x - ~ ’ ) ~ +  ( y - ~ ’ ) ~ ;  this is obtained by solving V2$ = w in terms of the 
Green function of the problem. The velocity field is 

Now suppose o(x,y)  is constant within regions Rk, which divide all of space: 
w ( x ,  y) = ok if (z, y) E Rk. Then we have 

r r  

$(z, y) = (27~)-’ wk J J dx’ dy’ log r ,  (2.3) 
k Rk 
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We next use Stokes’ Theorem, 

(Q,, - Put) dx’ dy‘ = (P dd + Q dy’ ), (2.5) Js, Jc 

to convert. the expressions for $ and u into line integrals. C in Stokes’ Theorem 
represents the entire boundary around the region R. Using Q = +(z’-z) logr and 
P = -+(y’ - y )  log r for $, we find that 

r 

while, with Q = 0, P = logr for u and Q = logr, P = 0 for v,  we obtain 

u(z,y) = - ( 2 x ) - ’ x  wk logrkdXk, (2.7) 
k JCk 

where r i  = ( x k - z ) 2 +  ( Yk- Y ) ~ ,  xk = ( X k ,  Y,) is a point on c,, the boundary of the 
region R,, and r is the total circulation of the fluid: 

r 

(Ak is the area of the region Rk). Both $ and u involve an expression of the form 

x J (quantity independent of wk) ,  (2.9a) 
k Ck 

and so this can be rewritten as 
a 

z &k J - (quantity independent of oL), 
k Ck 

(2.9b) 

where c k  is the exterior boundary to R, (there may be interior boundaries that are 
the exterior boundaries of other regions) and &k is the jump in the vorticity across 
f l k  (inside vorticity (wk)  -outside vorticity). Now the dynamical evolution of the 
vortex boundaries cj is given by 

dx 
I= u(xj) =-(4%)-’x:(3;C l o g [ ( X ; , - X , ) 2 + ( Y ~ - ~ ) 2 ] d X ~ .  (2.10) 

dt k 6 k  

2.2. Steadily corotating vortices 
The condition for a steadily rotating vortex configuration (relative to the origin at 
(z, y) = (0,O)) is that the fluid velocity measured in a frame rotating at a rate 52 is 
tangent to the vortices’ boundaries. 52 is the constant rotation rate of the system. 
This is equivalent to saying that the rotating-frame stream function must be constant 
on the vortices’ boundaries : 

$(Xj) -+52(X,Z + q) = C, a constant for each vortex, j = 1, . . . , N 

This study is concerned with equilibrium configurations of the type shown in 
figure 1. Each vortex is identical with the others. The vorticity in each vortex is w,,, uz 
is the closest distance from the origin along a ray passing through the centre of the 
vortex, and u: is the furthest distance. The geometry of the system is completely given 
by the function g ( e ) ,  which depends parametrically only on a, = a,*/a: and N ,  the 
number of vortices (we have restricted ourselves to symmetric solutions that have 
g(B) = g(  - 8)) .  The system is non-dimensionalized such that wo = 1 and a: = 1. Then 
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FIGURE 1. The geometry of N = 4 corotating constant-vorticity vortices. 

the equilibrium solution is [g(O; a,, N), Q(a,, N ) ]  - for a given number of vortices, 
a, < 1 describes the family of solutions. 

We had to resort to numerical means to find the equilibrium boundary shapes. We 
followed the numerical procedure outlined by Pierrehumbert (1980) with minor 
modifications specific to corotating configurations ; thus only a brief discussion will 
be presented. Since all of the vortices are assumed to be identical and symmetric 
(g(8) = g( -6)), it is necessary only to calculate the boundary shape of the upper half 
of the vortex lying on the positive x-axis. Along this boundary 

(2, y) = (r,+g(e) C O S ~ ,  g(e) sine), 

where r, = i(1 -ao) (see figure 1) .  The constancy of the stream function in the rotating 
frame then gives for every 8 

(2.11) G = +(g(e), e)-t~(r~+g2(e)+2r0g(e) case), 

where + is calculated from (2.6). The two boundary conditions 

g(0) = g(a) = R = t (  1 -a,) 

determine 52 and C as follows: 

(2.12) 

Thus (2.1 1)  is a nonlinear integral equation to determine g(8). Pierrehumbert (1980) 
introduced an iterative relaxation scheme whereby an equation like (2.1 1)  was 
linearized about a good guess for the boundary shape in order to determine the 
correction to this shape. After a few iterations, we accepted the approximate 
solution as the exact solution when the relative error between two successive iterated 
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solutions fell below The scheme failed to converge only when the velocity 
tangent to the vortex boundary (in the rotating frame) approached zero somewhere 
along the boundary. Such a situation is known to give rise to ‘corners’ (see Wu, 
Overman & Zabusky 1982). Finally, in order to perform the contour integrals in the 
expressions for 9 and u, we discretized the boundaries of the vortices. We chopped 
each boundary into 144 equal angles, interpolated the boundary between every two 
nodes by local cubics, and used 4-point Gaussian quadrature to integrate between 
every pair of nodes. The sum of all these integrals comprised the contour integral. 
The error introduced by the discretization was found to be well below (we 
confirmed this by doubling the number of nodes on each vortex boundary). More 
specific details regarding the discretization can be found in Dritschel (1985). 

3. The vortex boundary shapes: perturbation expansion 
A perturbation expansion to fourth order in the small parameter 

8~ R / ro=  ( l -uo)/( l+uo)  

was carried out as an independent confirmation of the numerical results. Specifically, 
the boundary shape and the rotation rate were expanded in powers of 8: 

g(a) = R(1 +6g,(a) + 82g2(a) + @g3(a) + . . .), 
(3.1) I D = Do( 1 + 852, + 8251, + 8852, + . . .), 

where 52, is the rotation rate of small circular pointlike vortices: 

Do = +(N- 1) 82 

(Thomson 1883, p. 97). 
In  $2 we used the fact that the boundary must be a streamline in a frame rotating 

at angular velocity 52. This is equivalent to saying that the local velocity be exactly 
tangent to the boundary (for then no fluid would cross it). The mathematical 
expression for this is 

where y = g(a) sina, x = r,+g(a) cosa, and (4,C) = (u ,w)+Q(y ,  -2) is the velocity 
in the rotating frame. This is the same as 

(3.4) 

where 4, and 4, are the radial and tangential velocities in the rotating frame relative 
to the point (r0,  0) : 

(3.5) 
4, = Q cosa+Z sina, 

5cosa-4sina. 

To calculate g l ,  g 2 ,  g3 and so on, the expansions in (3.1) are substituted into (3.4), 
and the velocity field is calculated using (2.7). Like powers of 6 yield integral 
equations for g,(a) which also depend upon g,(a), . . . , gm-,(a). The functional form 
of each gm was inferred from the numerical calculations described in $2. The integral 
equation for each gm then reduced to a simple linear algebraic equation to determine 
the coefficient(s) of gm’s functional form. It was straightforward to carry out the 
integrals implied by (2.7), but the algebra is lengthy and not very illuminating. We 
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just mention that several important sums had to be evaluated which have the 
following values: letting ck = cos (2nk/N), 

N-1 

The first was determined by Thomson (1883), while the second was found by the 
author and is important for g4. Then, to fourth order in 6, we determined that 

g = R(l+S2a ~ i n ~ o l + 6 ~ 7  sin2a cosa+P(p+v cosza) sin2a+ ...), } (3.7) sz = Q,(1 +62a+O(P)), 

where 7 =-a(N- l ) (N-3) ,  p = a(++N-l),  and v =$(3a+N-1-ia2-y) .  We 
could not determine Q4, because this depends upon gs. In any case, these expansions 
were thoroughly confirmed by comparing them with the numerically computed 
solutions for N = 2-7. Section 4 shows a few of these comparisons. 

4. Properties of the equilibrium solutions 
We next describe the numerical solutions for 2-7 vortices, compare these solutions 

with the perturbation series developed in $3, and show how an expression based on 
the dynamics of point vortices very closely agrees with the results for finite-area 
vortices. 

4.1. Geometric properties of the equilibrium solutions 
Figures 2 (a-f) depict the families of solutions for 2-7 vortices. Each boundary 
corresponds to a different value of a, starting from a, = 0.95 and decrementing by 
Aa, = 0.05 until solutions with smaller a, could no longer be found. The solution with 
the smallest value of a, that we were able to compute is included among each family 
of solutions. Two vortices become pear-shaped and flattened as a, decreases. The O(s2) 
term of (3.7) accounts for the flattening effect (a = -+), while the O(S3) term 
corresponds to the pear shape (7 = a). The O(s4) term causes additional flattening, 
but this effect is only 5 yo at a, = 0.1. Three vortices remain surprisingly elliptical for 
all a,. This is because 7 = 0 and a = -%. The fourth-order term causes additional 
flattening. Four vortices are also flattened (a = -+), and again have a pear shape 
(7 = - f ) ,  but, since 7 has changed signs from 2 4  vortices, the pear shape is oppositely 
orientated. v is now positive (it is positive only for N = 4, 5 and 6), which implies 
additional thickening around 6 = $71, in, in, and in on each vortex, but p being 
negative (only for N = 2, 3 and 4) implies additional thinning around 8 = 271 and jn. 
For five vortices a = 0 accounts for the persistent nearly circular boundary shapes. 
7 is negative for N 2 4, so that the pear shape of four vortices typifies that for N > 4. 
The fourth-order effect is small, but thickens the vortices near 8 = in, etc. For six 
vortices cr becomes positive for the first time, so that the elliptical distortion is 
directed tangent to the circle that passes through the vortex centres. This effect 
becomes stronger as the number of vortices increases, and may be due to the fact 
that the configuration of vortices begins to locally resemble a straight street of 
vortices -the distortions seen here are very much like those found by Pierrehumbert 
& Widnall (1981). The third-order term (7) is due to the curved geometry, however, 
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a. = 0.565 

3 

a. = 0.65 

FIQURE 2. The superposition of the equilibrium solutions for various values of a,, starting at 
a, = 0.95 and decrementing by Aa,, = 0.05. The solution with the smallest a, that we were able to 
obtain is also indicated. 
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FIQURE 3 
various 

I. The rotating-frame stream-function field for 4 vortices with a, = 0.4, showing 
distinct circulation regions. The bold contours denote the vortex boundaries. 

and continues to distort each vortex into a pear shape. Since p and v are positive 
the elliptical shape is stretched (p )  but thickened at the ends (v). For seven or more 
vortices v becomes negative again (g > 0, T < 0, p > 0), so that the elliptical shape 
is tapered at its ends. This tapering also occurs in the vortex-street solutions of 
Pierrehumbert & Widnall, who furthermore found that their family of distinct vortex 
solutions passes continuously into a family of wavy vortex-sheet solutions. By 
analogy, we expect that the families of corotating vortices pass continuously into 
families of wavy annular vortex solutions (curved vortex sheets) for large enough N. 
We suspect that four or more vortices may touch at  points between themselves but 
not at the origin (Overman & Zabusky (personal communication 1984) have shown 
that two and three vortices touch at the origin when a, = 0). 

4.2. Confined fluid motions around the vortices 
Figure 3 shows the rotating-frame stream-function field associated with an equilibrium 
configuration of four vortices. It was discovered that there exist many distinct regions 
of circulating fluid separated by streamlines having at  least one corner (a point where 
the total velocity vanishes - in the rotating frame). Figure 3 clearly shows distinct 
circulating regions, but we decided to examine qualitatively all of the possible regions 
by calculating the separating streamlines in the limit of point vortices (uo+-i). 
Figures 4(u-e) illustrate the results for 2-6 vortices. There are five possible regions 
of circulating fluid: (1) central (not present for two vortices only), (2) vortex (the 
region around the vortex as well as the vortex itself), (3) band, (4) umbrella and (5) 
outer flow. Note that the band region wraps around to the inside of the vortices for 
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5 ,) 

5 5 

5 

FIQIJRE 4. The closed circulation regions for 2-6 point vortices: (1) central, (2) vortex, (3) band, 
(4) umbrella and (5) outer flow. The dots indicate the vortex locations. 
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arealrrRz centri 

a, exact 

0.975 0.9999 
0.95 0.9997 
0.9 0.9986 
0.8 0.9938 
0.7 0.9843 
0.6 0.9681 
0.5 0.9425 
0.4 0.9029 
0.3 0.8427 
0.2 0.7522 
0.1 0.6224 
0.085 0.5997 
0.08 0.5921 
0.07 0.5767 
0.065 0.5690 
0.06 0.5613 
0.05 0.5461 
0.015 0.4970 

0.975 0.9999 
0.95 0.9996 
0.9 0.9981 
0.8 0.9917 
0.7 0.9787 
0.6 0.9559 
0.5 0.9181 
0.4 0.8556 
0.3 0.7523 
0.2 0.5896 
0.185 0.5598 
0.18 0.5496 
0.1 0.3831 
0.05 0.3254 
0.045 0.3229 
0.04 0.3207 
0.035 0.3188 

approx. 

0.9999 
0.9997 
0.9986 
0.9938 
0.9839 
0.9668 
0.9383 
0.8913 
0.8130 
0.6790 
0.4412 
0.3915 
0.3739 
0.3369 
0.3176 
0.2976 
0.2557 
0.0857 

0.9999 
0.9996 
0.9981 
0.9916 
0.9784 
0.9549 
0.9150 
0.8476 
0.7320 
0.5281 
0.4858 
0.4708 
0.1554 

-0.1414 
-0.1768 
- 0.2 1 34 
-0.2513 

exact 

1 .m 
1 .m 
1 .m 
1 .m 
1 .0001 
1.0002 
1.0008 
1.0022 
1.0055 
1.0136 
1.0350 
1.0408 
1.043 1 
1.0479 
1.0506 
1.0535 
1.0599 
1.0910 

1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .0000 
1 .m 
0.9999 
1 .m 
1.0016 
1 .W25 
1 .W28 
1.0238 
1.0811 
1 .OW4 
1.0956 
1.1028 

TABLE 1 

iid/ro TIT," 

approx. exact approx. 

(a) 2 vortices 

I .m 
I .m 
1 .m 
1 .m 
1.0001 
1.0002 
1.0008 
1.0021 
1.0053 
1.0123 
1.0280 
1.0316 
1.0329 
1.0357 
1.037 1 
1.0387 
1.0419 
1.0554 

1 .0001 
1.0003 
1.0014 
1.0062 
1.0160 
1.0329 
1.0611 
1.1076 
1.1870 
1.3321 
1.6307 
1.7013 
1.7270 
1.7823 
1.81 19 
1.8429 
1.9096 
2.1963 

(b) 3 vortices 

1 .m 
1 .oooo 
1 .oooo 
1 .oooo 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .m 
1 .oooo 
1 .m 
1 .m 
1 .oOOo 
1 .m 
1 .0000 
1 .m 

1 .oO01 
1.0004 
1.0019 
1.0084 
1.0217 
1.0456 
1.0875 
1.1639 
1.3144 
1.6558 
1.7405 
1.7717 
2.5831 
3.3632 
3.4354 
3.5054 
3.5729 

I .0001 
1.0003 
1 .O14 
1.0062 
1.0156 
1.0313 
1.0556 
1.0918 
1.1450 
1.2222 
1.3347 
1.3556 
1.3628 
1.3777 
1.3854 
1.3932 
I .4094 
1.4709 

1.0001 
1.0004 
1.0018 
1.0082 
1.0208 
1.0417 
I .0741 
1.1224 
1.1933 
1.2963 
1.3153 
1.3219 
1.4463 
1.5457 
1.5568 
1.5680 
1.5795 

TIT& A^ B 

1 .oooo 
1 .0000 
1 .m 
1 .m 
0.9999 
0.9995 
0.9984 
0.!1957 
0.9893 
0.9753 
0.9474 
0.9418 
0.9399 
0.9360 
0.9340 
0.9321 
0.9282 
0.9171 

1 .m 
1 .m 
1 .m 
1 .m 
0.9999 
0.9995 
0.9985 
0.9958 
0.9889 
0.9732 
0.9696 
0.9684 
0.9422 
0.9364 
0.9364 
0.9366 
0.9366 

0.0002 
0.0007 
0.0028 
0.0122 
0.0302 
0.0587 
0.0994 
0.1.525 
0.2153 
0.2784 
0.3201 
0.2225 
0.3231 
0.3236 
0.3237 
0.3237 
0.3231 
0.3183 

0.0002 
0.0010 
0.0041 
0.0183 
0.0450 
0.0870 
0.1456 
0.2184 
0.2938 
0.3407 
0.3420 
0.3420 
0.3096 
0.2874 
0.2872 
0.2874 
0.2879 

9.2403 
7.8284 
6.3931 
4.9129 
4.015i 
3.3653 
2.8608 
2.4622 
2.1548 
1.9397 
I .83!23 
1.8270 
1.8259 
1.8246 
1.8244 
1.8245 
1.8256 
1.8358 

6.0817 
5.1407 
4.1848 
3.2022 
2.6123 
2.1924 
1.8772 
1.6430 
1.4859 
1.4162 
1.4145 
1.4145 
1 .M98 
1.4732 
1.4734 
1.4733 
1.4729 
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TABLE 1 (cont.) 

area/nR2 centroidlr, TIT,, 

a, exact 

0.975 0.9999 
0.95 0.9997 
0.9 0.9986 
0.8 0.9937 
0.7 0.9835 
0.6 0.9648 
0.5 0.9297 
0.4 0.8570 
0.3 0.6933 
0.270 0.6181 
0.265 0.6044 
0.205 0.:3992 

0.975 1.oooO 
0.95 1.oooO 
0.9 1.0000 
0.8 1.ooo1 
0.7 1.0005 
0.6 1.0024 
0.5 1.0094 
0.44 1.0375 

().!I75 1 .OW I 
O.!G I .OO()6 
O.!)  I .0024 
0.8 I . 0 1  13 
0.7 1.0336 
0.6 1.1024 
0.565 1.2059 

0.975 l.oOO3 
0.95 1.0013 
0.9 1.0057 
0.8 1.0280 
0.7 1.0925 
0.65 1.1916 

approx. 

0.9999 
0.9997 
0.9986 
0.9938 
0.9839 
0.9668 
0.9383 
0.8913 
0.8 I 30 
O.TSO2 
0.7742 
0.6876 

1 .oOoo 
1 .ow0 
1 .m 
1 ,0002 
1.0016 
1.0063 
1.01 98 
1.0366 

1 .o(H)I 
I .0006 
I .0024 
1.01 1:) 
1.0324 
1.0779 
1.1038 

I .0003 
1.0013 
1 .0057 
1.027 I 
1.0778 
1.1224 

exact 

1 .oooo 
1 .m 
1 .m 
1 .oooo 
0.9998 
0.9992 
0.9972 
0.9916 
0.9783 
0.9722 
0.97 10 
0.9362 

1 .m 
1 .oooo 
1 .m 
0.9999 
0.9995 
0.9976 
0.9901 
0.97 1 1 

I SKKK) 
1 .oooo 
1 .ow0 
0.9998 
0.9980 
0.9940 
0.9867 

1 .ow0 
1 .oooo 
1 .oooo 
0.9997 
0.9980 
0.9944 

approx. exact 

(c) 4 vortices 

1.0000 1.oO01 
1.0000 1.0003 
1.OOOO 1.0014 
1.0000 1.0063 
0.9998 1 .O 163 
0.9993 1.0346 
0.9977 1.0688 
0.9937 I .1444 
0.9842 1.3683 
0.9795 1.5101 
0.9786 1.5395 
0.9645 2.1401 

( d )  5 vortices 
l.m l.m 
1.oOoo l.m 
l.m 1.0000 
0.9999 0.9998 
0.9995 0.9984 
0.9980 0.9927 
0.9938 0.9705 
0.9886 0.9063 

( P )  6 vortices 

I .OOW 0.!)999 
1.oooo 0.9994 
1.oooO 0.9976 
0.9999 0.9885 
0.9991 0.9653 
0.9963 0.8955 
0.9944 0.8051 

(f) 7 vortices 

1.oooO 0.9997 
1.oooO 0.9987 
1.oooO 0.9943 
0.9998 0.9722 
0.9985 0.91 12 
0.9970 0.8282 

approx. TIT,*, A B 

1 .OoOl 
1.0003 
1.0014 
1.0062 
1.0156 
1.0313 
1.0556 
1.0918 
1.1450 
1.1652 
1.1688 
1.2176 

1 .m 
1 ,0000 
1 .m 
1 .m 
1 .0000 
1 .oOOo 
1 .m 
I .oooo 

1 .oOOo 
1 .m 
1 .0000 
1 .0000 
1 .0000 
0.9998 
0.9993 
0.9974 
0.991 1 
0.9875 
0.9868 
0.9747 

1 ,0000 
1 .oooo 
1 .om0 
1 .0000 
1 .oooO 
0.9999 
0.9994 
0.9970 

0.0003 
0.0013 
0.0055 
0.0244 
0.0604 
0.1173 
0.1975 
0.2961 
0.3772 
0.3849 
0.3850 
0.3461 

0.0004 
0.0016 
0.0069 
0.0307 
0.0768 
0.1526 
0.2780 
0.3836 

4.6201 
3.9145 
3.1979 
2.4626 
2.0232 
1.7131 
1.484 1 
1.3222 
1.2375 
1.2313 
1.2313 
1.2586 

3.7947 
3.2303 
2.6570 
2.0687 
1.7167 
1.4669 
1.2692 
1.1776 

0.9999 1.OOO0 0.OOO5 3.5716 
0.9995 1.oooO 0.0020 2.8014 
0.9977 1.oooO 0.0083 2.3234 
0.9897 1.oooO 0.0372 1.8319 
0.9740 0.9999 0.0952 1.5352 
0.9479 0.9991 0.2021 1.3154 
0.9356 0.9971 0.2737 1.2362 

0.9997 1.oooO 0.0006 2.9143 
0.9987 1.0000 0.0023 2.5110 
0.9945 1.oooO 0.0097 2.1009 
0.9753 0.9999 0.0442 1.6774 
0.9377 0.9994 0.1 175 1.4164 
0.9100 0.9980 0.1847 1.3051 
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three and four vortices, but remains to the outside for all other numbers. However, 
for three large vortices (a, = 0.1) we have determined that the band is to the outside 
of the vortices. This implies that there exists a value of a, for which the band region 
is absent. 

4.3. Comparison of the exact and approximate solutions 
We now compare the exact solutions with the approximate O(s4) ones. Area is 
divided by nR2, centroid (2, = 11 x dx dy/Jj  dx dy) by r,, and period of rotation T by 
Tpv = 2n/apv, whereQPv = 8, = a(N- 1) J2 is just theleadingterm in the perturbation 
expansion for small vortices. Tables 1 (a-f) show A/nR2,  X J T ,  and T/Tpv versus a, 
for both the exact solutions and the O(s4) approximate ones. Close agreement is found 
for small vortices. The lack of the O ( P )  term for three vortices is evident from the 
x,/ro column. Also, five vortices show the lack of the O ( P )  term because A/nR2 
remains close to 1 for all a,, differing by 3.75% in the worst case (a, = 0.44). Other 
global properties of these solutions will be discussed in 10. 

Finally, we point out an excellent approximation to the exact rotation period T. 
This is based upon point-vortex ideas. N point vortices each of strength r all corotate 

~~ 

on a circle of radius x, at  a rate 
( N -  1) r 

%v = 4nx; 

(Thomson 1883, p. 97). For finite vortices we replace T by A ,  the area of one vortex, 
and x, is computed from the exact solutions. Then T&, = 2n/Q;tv and the third to 
the last column in tables 1 (a-f) shows T/T&. The true period differs little from T&. 
In the worst case (N = 2, a, = 0.015), T/T& = 0.9171. 

5. Stability: setting up the problem 
Thomson’s ( 1883) stability calculation for point vortices determined whether or 

not a slightly displaced configuration would remain near the equilibrium configuration. 
Six or fewer vortices are stable; seven vortices are neutrally stable even though 
Thomson erroneously concluded that they are slightly unstable because his calculation 
was not carried out to sufficient accuracy (see Morikawa & Swenson 1971). Eight or 
more vortices are always unstable; locally the configuration begins to look like an 
infinite street of vortices, which is unstable (Lamb 1932, p. 224). 

Since the vortices have finite size in the present study, new instabilities may arise 
from the deformation of the boundaries. We set out to describe a method whereby 
the stability of boundary disturbances can be determined. Let go(d) be the basic state 
as described in the previous sections. The disturbed boundary of the kth vortex 
( k =  1,2, ..., N )  is 

where the perturbation qJ(0, t )  is assumed to  be a normal mode: 

&(O, t )  = &(t9) cut. (5.2) 

The real part of u is the growth rate, while the imaginary part is the frequency of 
the boundary waves. The form of &(O) is chosen (arbitrarily) as 

M 
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where the #m are the orthonormal functions 

xi+ = -, cos e, cos 28, . . . , cos pe, sin 8, sin 20, . . . , sin Po) (5.4) ($2  
( M  = 2 P +  1). Cmk are coefficients to be determined. M is the order of truncation; the 
numerically computed solutions are presumed to approach the true solution as 
M + W .  

A point on the boundary of one perturbed vortex moves with the local fluid velocity 
due to all of the perturbed vortices. Thus 

or 

where Cek and c,.k are the tangential and radial velocities relative to the 'centre' of 
the kth vortex, (To ck, ro 8 k ) ,  in the rotating frame (rotating at the rate D). Here 

r, = !j(l +a,), ck = cos ( 2 x k / N ) ,  and 8k = sin ( 2 n k / N ) .  
We linearize (5.5) by substituting 

(5.6) I g k ( e ,  t ,  = +@k(e) cut, 

cOk(e? t )  = ceo(4 + cut, 
Grk(8, t )  = e r o ( 6 )  + a r k ( 6 )  cut. 

The k-independent zero-order equation is 

which, by definition, is satisfied by the basic state. The first-order equation is 

iiek and tir, are linear functionals of @,, j = 1 , 2 ,  .. ., N .  An expression for them is 
derived next. Let u be the velocity in the non-rotating frame and ii be that in the 
rotating frame. Then 

And, with ek = 2 x k / N ,  
ii(x) = u ( x ) + Q ( y ,  -z). (5.9) 

(5.10) 

where ( i i k ,  9) is the velocity of a point on the kth vortex's boundary. Then dek and 
ti,, can be obtained from the linearized versions of Gek - tZeo and i irk - Cr0 respectively. 
h t  f ik  iik - i j ok .  Then to first order 

" (dXoj/da) sin (a+ej)-(dYoj/da) 'OS 
(yak,, - x o k j )  da 

'gkj 

' k  =- g j ( a )  
2Xj-l 0 

(dXo,/da) sin (6+Ok)- (dY,/da) cos (8+8,) 
(Yokj,  -"Okj) da 

'gkj 

-a&(@ ( - sin (0 + ek) ,  cos (0 + ek) ) ,  (5.11) 
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where iik = iik(xk) and 

From this expression for a,, ask and a,., can be found directly from (5.10) and then 
substituted into the linear disturbance equation (5.8). We next replace qj(a) and gk(0) 
by their equivalent sums in (5.3) and apply a Galerkin method described in 
Appendix A to obtain finally the eigenvalue problem 

N 

k- 1 
aCJ= AkJCk, j = 1 ,  ..., N, (5.12) 

where Cj is the vector (C?, C i ,  ..., CMj)  and Ak5 is a real M x M matrix for each k 
and j. 

Lastly, two constraints are imposed to restrict the class of perturbations. The first 
keeps the area of each vortex constant so that the strength of each vortex is not 
changed. The second conserves the second moment (or angular momentum) : 

J = JJw(x2+y2)dxdy. (5.13) 

This quantity is conserved in an inviscid fluid (see $9 for a proof) and Thomson (1883, 
p. 98) imposes this constraint as well. Appendix A shows how these constraints are 
imposed on the eigenvalue problem. 

6. Stability: symmetry properties 
Because of the symmetric distribution of vortices, (5.12) can be considerably 

simplified. The matrix Ajk can be thought of as an interaction matrix between the 
j t h  and kth vortices. It must depend purely upon the relative positions of the j th  and 
kth vortices. This gives the symmetry property 

This property has been confirmed by actually computing all of the Ajk. Given Alk, 
k = 1, . . . , N, all of the other Ask can be found by the symmetry property above. But 
this is not the real advantage of recognizing this symmetry; (5.12) can be reduced 
to N smaller (M x M) eigenvalue problems at great savings in computational expense. 

Consider the case for three vortices (N = 3). Let E = All, F = Ala and G = A13. 
Then the complete interaction matrix is 

AIk = Aj+lvk+l, 1 = 1,2, ..., N, for all j and k. (6.1) 

E F G  
A = G  E F ,  (6.2) 

[ F  G E l  
and (5.12) can be separated as 

EC1 + FC2+ GC3 = dl, ( 6 . 3 ~ )  

GC'+EC2+FC3 = d2, (6.3b) 

FC'+ GC2 + EC3 = d3. ( 6 . 3 ~ )  
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Multiply (6 .3a)  by a, (6.3b) by P, and ( 6 . 3 ~ )  by y (a, P and y are constants) and add: 

(a€+PG+yF) C1+(aF+/3€+yG) C2+(aG+/3F+y€) C3 = a(aC1+/3C2+yC3).  
(6.4) 

Define w = aC1 +PC2 + y C 3 ,  We choose (a, P, y )  such that an equation of the form 

DW = cw 

results. Then D must have the fvrm 

so that a//3 = P/y  = y /a .  There are N = 3 solution triplets (a, /3, y ) :  (1 ,1 ,  l),  
( 1 , 0 , w 2 )  and (l,02,04), where w = -4+i443,  o2 = -4- i i43 and o3 = 1. 1 ,  w and 
w2 are the three roots of unity. Let us label these solutions by 1 :  

(a,/3, y ) l  = (1, d l - l ) ,  w2( l - l ) ) .  (6.7) 

D 1 ~ l = ~ l ~ l ,  1 =  1 , 2 , 3 .  (6 .8)  

Three distinct eigenvalue problems are the result : 

In  general, for N vortices 
N N 

k-1 k-1 

D, = x o(k-l)(Z-l)Alk, w 1 -  - C w(k-l)(l-l) Ck, (6.9) 

while oN = 1 (om = c,+ism = COB (2nm/N)+i  sin (2nmlN)) .  

eigenvectors are given by 
Once the eigenvalues and eigenvectors have been found for each D,, the original 

Ck = N-lo-(l-l) (k-1)  w1, k = l ,  ..., N .  (6.10) 

These N eigenvectors describe the disturbance (by (5 .3))  on each of the N vortices. 
Note that, when 1 = 1, Ck = wl/N, i.e. the disturbance is the same on each vortex. 
Thus 1 determines the symmetry of the disturbance. And, when N = 2 and 1 = 2, 
C’ = - C2, so the disturbance is antisymmetric. 

7. Stability: numerical results 
The matrix A of 95 is computed as described in Appendix A. It was truncated to 

M = 21 Galerkin functions and little change in results was seen when M was increased 
to 41. Routine EIGCC from the IMSL package was used to calculate the eigenvalues 
and eigenvectors. In  this section we will look at how the eigenvalue Q depends on 
a, for N = 2-8 vortices and show the structure of some of the eigenmodes. 

7.1. Limiting results and stability-diagram dejhitiom 
First let us examine the limit a , + l ,  i.e. small circular vortices. As shown in 93, the 
correction to this circularity is O(Se), where S = (1 -a,)/(l +a, ) ,  and this is because 
the influence of the other vortices is very weak. So, for small 6, the vortices behave 
practically independently ; therefore the eigenvalues should be like those for a circular 
vortex (Lamb 1932, p. 230) 

= f i#m- l ) ,  m = 1 ,2 ,  ... . (7.1) 

The eigenfunctions consist of waves of the form cos (me &t (m-  1) t )  travelling in 
opposite directions on each vortex’s boundary. However, these waves become 
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FIGURE 5. (a )  The stability diagram for two vortices. Solid lines correspond to frequencies (ri) and 
dashed lines to growth rates ( r  = CT~ 2’). ( b )  The perturbation stream-function field (perturbed minus 
equilibrium) for the growing disturbance; N = 2, a, = 0.075, 2/1 +conjugate. (c) Same aa in ( b )  
except for the decaying counterpart. 

coupled when S increases owing to the influence of the other vortices. N different 
eigenmodes of N different symmetries (1 = 1, ..., N, as defined in $6) become 
degenerate when a, = 1 for each value of m, the circular-vortex mode index. Modes 
on the stability diagrams to be shown in a moment will be labelled m/ l ,  where m is 
the origin of the mode at a, = 1 while 1 indicates its symmetry. 

a ( = a, + iri),  - a, a* and - a* are all eigenvalue solutions; thus only positive ur 
and a, will be shown. Results will be presented in terms of the quantity r = a,T, 
where T is the period of rotation of the configuration (T = 27c/sZ). Then e“ gives the 
amplification of the disturbance after one rotation period. 



The stability and energetics of corotating uniform vortices 

/ N ,- 24 (4 0.300 

0.275 - 
0.250 - 
0.225 - 
0.200 - 
0.175 - 
0.150 - 
0.125 - 
0.100 - 
0.075 - 
0.050 - 
0.025 - 

Uf 

16 

14 

12 

10 

8 

6 

111 

FIGURE 6. (a) The stability diagram for 3 vortices. The first instability is asymmetric (1 /3 + 2/3), 
while a symmetric instability (2/1 +conjugate) sets in for slightly smaller a,. (6) The perturbation 
stream-function field for the asymmetric instability; N = 3, a, = 0.2,1/3 + 2/3. (c) The perturbation 
stream-function field for the symmetric instability; N = 3, a, = 0.2, 2/1 +conjugate. 

7.2.  Stability diagrams for 2-8 vortices 
The stability diagram for two vortices is shown in figure 5 (a) .  Only the m = 1, . . . , 4  
mode origins are shown, and the diagram is restricted to small a, (large vortices) 
because the configuration is stable for large a, and m. The m/l = 2/1 mode coalesces 
with its complex conjugate at a, = 0.083, and this mode maintains zero frequency 
for all smaller a,. Using an energy argument, Saffman & Szeto (1980) conjectured that 
the vortices would become unstable at a, = 0.066. The reasons for the discrepancy 
will be discussed in 3 1 1. The growth rate of the instability rises rapidly as a, decreases 
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FIGURE 7. The stability diagram for 4 vortices. The first instability is antisymmetric 
(1/3+2/3 - every other vortex is perturbed the same way), the second is asymmetric (1/4+2/4), 
the third is symmetric (2/1 +conjugate), while the remaining two are asymmetric. 

from 0.083. A perturbation stream-function field for the disturbance at a, = 0.075 
is shown in figure 5 (b). This diagram shows that there is a tendency for the vortices 
to merge. This boundary instability is unique to finite-sized vortices and is distinct 
from the purely displacement-type instability of Thornson’s point vortices. 
Figure 5 (c) contrasts with 5 (b)  by showing the decaying counterpart. 

The stability of three vortices can be seen from figure 6(a). First, the 2/3 and 1/3 
modes (asymmetric) coalesce at a, = 0.223 and remain fused for all a, less than this 
value (see figure 6b). At a, = 0.223, ui =I= 0, so that this is the onset of an oscillatory 
instability. Because of the symmetry decoupling of $4, only modes of the same 
l-symmetry may coalesce. Indeed the 2/1 mode (symmetric) combines with its 
complex conjugate at  a, = 0.206 and becomes the dominant instability for a, < 0.204 
(see figure 6c). Now, however, both 6, and ci are zero at a, = 0.206. This often 
represents an ‘exchnge of stabilities’, which implies the existence of another kind 
of steady state (i.e. one not capable of being parametrized by a single parameter 
like a,). More will be said about this in 5 11.  

Turning next to four vortices in figure 7, we see the first instability is a result of 
1/3 and 2/3 joining at a, = 0.373 and is again oscillatory. Shortly thereafter at 
a, = 368,1/4 and 2/4 join but then fragment at a, = 0.268 (the growth rate vanishes 
there). The upper stable branch subsequently unites with the 3/4 mode at a, = 0.253 
and remains intact for all smaller a,. The 1/2 mode crosses the a, = 0 axis at 
a, = 0.235, while its mirror image, a 1/4 mode, crosses from below at the same point 
and then combines with the lower stable branch of the 1/4 + 2/4 fragmentation at 
a, = 0.227. Finally, the symmetric 2/1 mode merges with its conjugate at a, = 0.283, 
leading to an exchange of stabilities. 

Five vortices are exhibited in figure 8. The stability diagram has become much 
simpler. The first instability occurs as 1/5 coalesces with 2/5 at a, = 0.491. Note that 
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asymmetric. 

the growth rates for increasing N are decreasing. All of the unstable disturbances are 
now oscillatory. 

Six vortices are even simpler (figure 9). 2/6 and 1/6 join at a, = 0.577 for the first 
instability. Again, there are no symmetric instabilities ( I  = l),  and we suspect this 
is true for all N 2 5. 

Seven vortices, known to be neutrally stable when a, = 1, are shown to be unstable 
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FIGURE 11.  The stability diagram for 8 vortices. Again there are two growing displacement-like 
instabilities whose growth rates are non-zero at a, = 1, in agreement with point-vortex stability 
results. 

for all a, < 1 (figure 10). Thus we find that the equilibrium configuration of seven 
point vortices is destabilized by the effects of finite size. It is the 114 and 115 modes, 
which account for the instability in contrast with fewer vortices. For small vortices, 
these (m = 1) modes correspond to displacing the vortices but not changing their 
(nearly) circular shape and thus are displacement-type instabilities. The finite size 
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of the vortices renders the array unstable to modes which are analogous to the 
displacement instabilities occurring for eight or more point vortices. 

As a check on the numerical results, the stability of eight vortices was determined 
numerically and analytically (see Appendix B). The point-vortex stability problem 
is there reduced to a single formula for the growth rates: 

u - -  ; - y2;1)8 ((r,-1)2(p+1--)2-(N-1)2), p = 1, ..., N-1. (7.2) 

8 point vortices are unstable. In the finite-area case, the two displacement-type 
instability modes have nearly constant growth rates of 3.4763 and 5.0776 respectively 
in the range 0.95 < a, < 1. This agrees well with the values of 3.4764 and 5.0776 
predicted by (7.2). Figure 11 shows the stability diagram for eight vortices. This shows 
that finite size further destabilizes the vortex configuration. We expect that this holds 
for more than eight vortices as well, because the configuration increasingly resembles 
a street of vortices locally. 

Thus for N < 7 the new modes correspond to boundary distortions, while for N 2 7 
the instabilities are just modified point-vortex modes (displacement modes). 

8. Energy and excess energy of two-dimensional motion in an unbounded 
domain 

Energy and other global properties of the fluid, if conserved, restrict the evolution 
of unstable, perturbed equilibrium configurations of vorticity, but, additionally, these 
conserved quantities determine the conditions under which an unstable initial 
configuration (state) may nonlinearly evolve close to a stable final or subsequent state. 
In the case of a viscous fluid many of the conserved quantities are lost, thus the 
evolutionary restrictions are considerably less severe, and much less can be said about 
the evolution of viscous flow. Section 9 describes in detail the conserved quantities 
in inviscid and viscous flow, while 8 10 discusses how energetics influences (nonlinear) 
transitions between near-equilibrium configurations. In this section we derive a new 
and useful energy quantity for two-dimensional motion. 

In a two-dimensional fluid with non-zero total circulation the energy is infinite if 
the fluid is unbounded. To remove this singularity we suppose that the vorticity 
distribution is confined very close to the centre of a very large tank of radius L. Let 
I be a lengthscale characteristic of the vorticity distribution. Then we require that 
l/L 6 1. More will be said about the choice of I in a moment. 

For an infinite incompressible fluid without interior boundaries, the stream 
function $(x, y) is r r  - 

$ = ( 2 ~ ) - ’  w’ log dx’dy’, (8.1) J J  L 

where r2 = ( x ’ - ~ ) ~ +  ( y ‘ - ~ ) ~  and w’ = o ( x ’ ,  y’) is the vorticity distribution. The 
kinetic energy 

T = ~ ~ J ( u 2 + v 2 ) d x d y ,  2 (8.2) 

T, = -LJjw$dxdy, 2 (8.3) 

with u = -$g and v = $z, approaches the ‘excess energy’ 
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as 1/L+O (with O(l/L) errors), since the boundary integral appearing in the 
transformation from T into T, via Stokes’ Theorem yields a vanishing contribution 
as l/L+O. 

Introducing the following non-dimensionalization, 

where r= JJwdsdy 

is the total circulation (a conserved quantity even in a viscous fluid - a proof will be 
given later), we find that $ and p separate into L-dependent and L-independent 
terms : 

(8.6) I JJ 
pS =--SJG$,d2d$. 1 

1 
L $ = (27~)-’ log -+ GS, GS = ( 2 ~ ) - ’  &’ log?’ dfldg’, 

x)-l  log-+ps, 1 
L 2 

T = - ( 4  

It will be shown in $9 that the second moment J ,  proportional to the angular 
momentum, is conserved in an inviscid fluid. J is redefined as 

and 1 is now chosen to be 
1 = (J/T): 

( I  = R for a circular constant-vorticity vortex of radius R) .  Then p can be rewritten 
as 

(8.9) 
J 

7c)-1 log -+Q. 
rL2 

P = - ( 8  

For inviscid transitions between two near-equilibrium configurations, J and r are 
conserved while L is fixed by definition, so that all we must require is that !f!! be the 
same for the initial and final states. We will see that this form of p is also useful in 
the viscous case. 

Saffman & Szeto (1980) also defined an excess energy, but they used l2  proportional 
to vortex area instead of J/T.  Our formulation appears to be the most general in that 
it can apply to any vorticity distribution with finite circulation including vortices 
of different strengths and non-uniform distributions. 

9. Conserved and non-conserved quantities in a viscous fluid 

is proved as follows. The vorticity equation 
As stated earlier, the circulation of an unbounded viscous fluid is conserved. This 

dw - _  - vv2w:  
dt 
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( u  is the constant viscosity), can be used to calculate 

ao 
(9.3) _ -  - -u.vw+ V V 2 0  

at 
Since 

we have K= dt -JJu.Bwdxdy+v 

= - (V* (wu) - w V u) dz dy + v V* Vw dx dy JJ 
= -Jm wu.Adl+v Jm Vo-Adl, (9.4) 

where A is the normal vector and dl is an infinitesimal displacement along the 
boundary at infinity (we have used Gauss' Theorem and V*u = 0). Because we have 
assumed r to be finite, this puts a constraint on w as r = (x2+y2)t+co. Suppose 
w % C P  as r+m. The part of the total circulation in the annulus rl < r < r2 as 
r l ,  r2+m and r2 9 rl is 

2xc 
a + 2  

Arx Jo2n do rdr(CP) = - (6+2-G+2). (9.5) 

Thus, if r is to remain finite, a < - 2. Thia can now be used to evaluate the contour 
integrals in dI'/dt. The normal component of the velocity is O(Jlr-9) as r+m, which 
can be seen by considering the dipole moment of the vorticity distribution. Also, 
Vw-ii x r-l a(rw)/ar x C(a+ 1) P-l, so that (9.4) becomes 

K lim P = 0. 
r+ m 

It can be shown in an analogous fashion that two other quantities are conserved: 

(9.7) 5 = r-l Slwxdzdy and ij = F1 JJwy dxdy. 

There seem to be no other conserved quantities. 
For an inviscid fluid, the energy and the second moment are both conserved but 

this property is lost in a viscous fluid. Consider first the energy evolution. It can be 
shown that the dissipation of energy takes the form (Lamb 1932, p. 580) 

The usual boundary integrals vanish owing to the asymptotic behaviour of w .  For 
the second moment (8.7) we have 

= $jJ2w(x2+y2)dxdy = 2 - (x2+y2)dxdy. 1s: (9.9) 
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Let f = ?j(x2+ y2). Then 

f V * ( w ~ ) d ~ d y + 4 ~  
dt 

= - 4 ss (V- ( fwu) -wu*x) dz dy +4v (V. (f Vw) -x*Vw) dz dy. (9.10) 

But X‘VO = V‘(OX)-~W.  SO 

-4  fuu*AdZ+4~ (f V~-wx)*Adl+4 ~ u . ~ d z d y + 8 v f .  (9.11) 
d J  
-= dt s, 

The first boundary integral vanishes as P, while the second integral vanishes as P + 2  
as r+oo (a < - 2 ) .  We next show that the term 

sJuu * x  dx dy 

vanishes. Since V2$ = w ,  u = - $ g  and v = kz, we have 

(9.12) 

(9.13) 

S O  

xy’-x’y 
= 2R I s d z d y  [sdz’dy’w(x)w(x’) I x-x’ 12 

= 0, (9.14) 

because the primed and unprimed variables may be interchanged while the integral 
must be the same. Thus the surprisingly simple result is 

d J  
- = svr, 
dt 

(9.15) 

a constant; hence J ( t )  = J(O)+8uTt, a result first obtained by Poincar6 (1893) (see 
also Ting 1983). When the fluid is inviscid J is conserved. Otherwise, it simply 
increases linearly with time. This represents the diffusion of the vorticity distribution. 
The fact that this result is independent of the details of the distribution is rather 
surprising. The physical content of (9.15) is that viscous dissipation spreads the 
vorticity over a progressively greater area. 
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10. Transitions based on energy 
10.1. Transition constraints 

We now make use of the results of @8 and 9 to put constraints on the evolution of 
unstable configurations. Our purpose is twofold : first, we consider this procedure as 
an important step toward understanding nonlinear stability, and, secondly, it seems 
as though energetic constraints determine the eventual fate of an unstable con- 
figuration. With regards to the second issue, i t  appears possible for a perturbed 
configuration to evolve close to a radically different configuration. The discussion to 
follow suggests that such eventualities may occur. To this end, we will consider three 
types of evolution: (1) viscous, (2) inviscid and (3) nearly inviscid. Different 
evolutionary possibilities characterize the three cases. 

Recall from (9.8) that the dissipation rate is given by 

- dT = -tq = -tv J J d d z d y ,  
dt 

(10.1) 

- 8vT, (10.2) 

while r remains conserved. Let be the initial kinetic energy and Ti be the kinetic 
energy of the subsequent state. Then T, - Ti = A T  < 0. Remember that T can be split 

dJ 
dt 

meanwhile from (9.15) 
_ -  

up as (see (8.6)) 

so that 

T 1  J P = - = - log-+/p,, rz 8~ rL2 

AT 1 
A5! = - = - logJ’+~sf -~s i ,  

r2 8It J ,  

showing that AT < 0 can be satisfied if 

- 1 Ji 
8x J f  

!P.,f < Tsi-- log -. 

(10.3) 

(10.4) 

(10.5) 

Since JJJ ,  < 1 it  is thus possible to have psf > psi. All one may say about viscous 
evolution is that Jf  > Ji and A!f < 0. The latter requirement implies that !fSf may 
not exceed psi by more than (8n)-’ log ( J f / J i ) .  

For inviscid transitions Jf = Ji, pSf = psi, and, in the general case of a non-uniform 
vorticity distribution, there would be an infinite number of other constraints because 
integrals of any moment of the vorticity distribution are conserved : 

!!% = 0, Mk = J J d d z d y ,  k = 1,2, ... . (10.6) 
dt 

However, for a piecewise-constant vorticity distribution, the Mk are given by Z, ujk A,, 
where u, and A, are the constant vorticity and area of the j t h  region. As a consequence 
of the local conservation of vorticity (doldt = 0) and incompressibility, the m, and 
the A, are always conserved. Thus all the moments are automatically conserved. 
Then, for this simple distribution of vorticity, there appears to be only a finite number 
of independently conserved quantities (u,, A!, 3, a, r, J and p). We will shortly show 
that this large number of conserved quantities severely restricts inviscid evolution. 

When the dissipation is small there is an extra constraint not present in the case 
of large dissipation, but fewer constraints when compared with inviscid flow. A 
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' nearly' inviscid transition is one for which the non-dimensional parameter 
= v At/12 4 1, where At is the transition time between near-equilibrium states. At 

need not be very large - an example with moderate At will be presented shortly. In 
general, we can estimate At by assuming that the amplitude of the perturbation, 
initially E ,  grows to O( 1) ; the time At this takes is approximately (r;l log ( l /c) ,  where 
a, is the growth rate of the linear disturbance. We derive next an equation that relates 
the final state to the initial state and the amount of dissipation. Define 

where we have used (10.2) and l2 = J / T .  Then 

A T =  Tsf-!f!si--log(l+AJ) 1 x Ipsf-Psi--. P 
87t x 

(10.7) 

(10.8) 

Because dT/dt = -+vy and since 7 will only change by a small fraction of itself during 
the transition (7 is conserved in inviscid flow), dT/dt can be evaluated at the initial 
time : 

(10.9) 
dT 
dt 
- x -avqi, 

so that 

Upon eliminating p from the expressions for AJ and A!f! we find 

So (10.8) becomes 

or, rearranging, 

1 6r3 A J  = -- AP. 
Ji T i  

2r3 

x Ji T i  
AP x !Ps, - Psi + - AP, 

(10.10) 

(10.11) 

(10.12) 

(10.13) 

This equation relates the structures but not the lengthscales of the initial and final 
configurations. The lengthscale li = ( J i / r ) i  and I ,  = (Jf/r)i are related by (10.7): 

lf/li x 1 +4p, (i0.14) 

so that the lengthscale of the final state is always largest. In  general (for an arbitrary 
non-uniform vorticity distribution) there are an extra infinite number of equations 
of the form (10.13) (because of (10.6)), but none of these can be put in such a simple 
form. If from (10.13) one can find an initial and final state for a given small AP, one 
must make sure that the fractional change of the other approximately conserved 
quantities are all 4 1. This is a consistency check. Summarizing then, in the case of 
small dissipation, (10.1 1)  represents an additional constraint not present in the case 
of large dissipation, where A!f! and A J  are unrelated. 

For constant-vorticity vortices, the situation appears considerably simpler because 
the only additional almost-conserved quantity is the vortex area. We would like to 
write down an equation analogous to (10.13) to express near-conservation of area, 
but this has so far proved impossible. Furthermore, vortex area only makes sense 
for a piecewise-constant vorticity distribution that evolves inviscidly. In  order to 
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extend the concept of vortex area to non-uniform vorticity distributions, first notice 
that, for the N corotating vortices of this study, the quantity 

(10.15) 

represents the non-dimensional area (divided by 7c) of the whole configuration. Here 
A is the dimensional area of one vortex and l2 = J / r  as before. The quantity 
appearing in (10.13), r3 /7 tJ iv i ,  is just 2,. Thus define, for a general vorticity 
distribution, 

A = -  (10.16) 

Because 2 = 1 for a single constant-vorticity circular vortex while f!! = 1/16n, let 
us define d = 167cPs and A 8  = 16n AF = -8B/Ai. Then (10.13) can be rewritten as 

gSf = gSi + AB( 1 - 2 4 ) .  (10.17) 

- 1-3 

7cJv’ 

10.2. Examples of transitions 
We next determine the specific conditions under which one unstable near-equilibrium 
state may become another near-equilibrium state. We first consider the transition 
between Ni corotating constant-vorticity vortices and Nf vortices. The initial state 
is characterized by aoi, a:, and Ni vortices and the final state by aof, a:, and Nf 
vortices, where a: is the lengthscale of the configuration as defined in figure 1. For 
an inviscid transition 

(10.18) 

The last equation relates a:f to ufi. We have already taken into account that r and 
J are conserved. r= wNA and w is the constant value of the vorticity inside the 
vortices before and after the transition because w cannot change without dissipation 
of energy. r-conservation implies Ni &aoi, Ni) = Nf A@,,, Nf), but, because r a n d  J 
are conserved and l2 = J / r ,  (10.15) shows that 2-conservation is just a convenient 
non-dimensional form of r-conservation. 

Figures 12 and 13 show ’(a,, N) and A(a,, N) for 2-8 vortices (see also tables 1 a-f ). 
A curious property of these curves is that (for the same N) &/duo and da/dao vanish 
at the same values of a, for N = 2, 3 and 4 vortices. More will be said about this in 
§ 11. For the present, we note that the first equation in (10.18) can be solved for aof, 
say aof = F(aOi). Meanwhile, the second can be solved similarly, say aOf = G(aOi). 
Consistency then requires that P(aOi) = O(ao,). However, for any combination of Ni 
and N,, this equation has 1u) solution. In  other words, an inviscid transition cannot 
occur between two different configurations of corotating vortices. 

So, transitions between Ni and Nf vortices, if they were to occur, must involve 
dissipation. The amount of dissipation can alternatively be looked upon as a measure 
of the incompleteness of an inviscid transition - in fact, this interpretation seems to 
be of the greatest practical value. In  any case, we can estimate the amount of 
dissipation by using (10.17). Assuming a priori that there may be nearly inviscid (or 
nearly complete) transitions, the change in A  ̂ will be very small; if we set d, = A, 
just to see roughly where I A 8  I as calculated from (10.17) is smallest, we find that 
the transition with the smallest I A 8  I (when the initial state is unstable) is Ni = 4, 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

FIGURE 12. B(a,, N )  versus a, for N = 2-8 vortices. 2 = 1 for a uniform circular vortex. 
a0 

" 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0 0  

FIGURE 13. &,, N )  versus a, for N = 2-8 vortices. a = 1 for a uniform circular vortex. 
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FIQUR~ 14. The transition dissipation A# is shown for N = 2 vortices in the range 0 Q a, < 0.1. 
The srq+llness of A# indicates that a nearly inviscid transition to an ellipse is possible for all unsteble 
a, (a, < 0.083). 

a0 

a,, = 0.373 to Nf = 5, aOf = 0.47; then A# = -0.185 (p  = 0.008). However, the fins! 
state is itself unstable, and its subsequent evolution would involve still mpre 
dissipation. The concept of ‘final state’ becomes meaningless when /3 = vAt/Z2 ceases 
to be small, because the initial configuration is expected to be markedly different 
owing to the smearing effects of viscosity (alternatively, one can only hope to get 
within O(/?) of the assumed ‘final’ state-see Dritschel (1985) for more details 
regarding actual nonlinear (inviscid) transitions). We conclude that stable near- 
equilibrium final states may not occur. 

As a second example of these energy ideas, transitions between an elliptical vortex 
and the corotating vortices are sought next. The ellipse is a simple-enough equilibriuni 
vorticity distribution to have analytic expressions for d and A : 

I (1 +e)2 
2(1 +c2)’ 

E =  1-210g 

- 2c A = -  
1 +c2’ 

(10.19) 

where c = b/a, the ratio of the semiminor to semimajor axis lengths. As with the N, 
to Nf vortex transition, inviscid and nearly inviscid transitions were sought by setting 
A(el1ipse) = A(N-state) to determine c(a,, N) and therefore #(ellipse). Then (10.17) 
is solved for Ab(a, ,  N) with bi = d(N-state) and df = $(ellipse). A,?? is shown in 
figure 14 for N = 2 vortices and 0 < a, < 0.1. Recall that two vortices are unstable 
if a, < 0.083. What is so surprising about this figure is the smallness of A,!? over this 
entire range (and B is about 25 times smaller). This suggests that an approximately 

5 P L I  157 
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0.1655 
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0.1635 
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a0 

FIGURE 15. c(a,) based on the conservation of 2. c % t over this entire range, implying that any 
unstable two-vortex configuration may evolve close to a 6: 1 ellipse. 

inviscid (or complete) transition is possible over a large range of a,. c(a,), shown in 
figure 15, is everywhere close to - a 6: 1 ellipse. This is an intriguing result since 
actual nonlinear evolution of two vortices does pass through a state nearly that of 
a 6 : l  ellipse, and this transition occurs in a moderate time. Overman & Zabusky 
(1982) show the evolution of a perturbed unstable 2-vortex state in their figure 7, 
and, at a later time, a 6 : 1 ellipse is present. In quite a different context, in a simulation 
of a shear layer using a cloud of point vortices, Christiansen & Zabusky (1973) show 
the 2-vortex to 6: 1 ellipse evolution in their figure 6. Since figure 14 allows such a 
wide range of transitions, it  is not surprising that the 6 : 1 ellipse is observed so often 
in vortex-evolution problems. But Love (1893) showed that an ellipse is unstable if 
c < 5, which makes a 6: 1 ellipse unstable, thus this ellipse may evolve into another 
configuration - in fact, Dritschel (1985) shows with nonlinear calculations that the 
ellipse can break up into a 2-vortex state, but we defer the details to that study. Other 
inviscid transitions between an ellipse and the N-vortex states are possible. The 
complete list is given in table 2. Here a:/a is the ratio of the scaling for the N-vortex 
state (see figure 1) to that of the ellipse. As N increases, the eccentricity of the ellipse 
increases. For severely stretched initial vorticity fields, stable final states are possible 
for 3,4,5 and 6 vortices. Note that a highly eccentric ellipse is essentially a finite-length 
vortex sheet. 

As a final example, inviscid and nearly inviscid transitions were sought between 
an annular vortex and the corotating vortices. The annular vortex has a distribution 
given by 

(10.20) 
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N 

2 
2 
3 
4 
5 
6 
7 

a0 

0.039 
0.087 
0.62t 
0.78t 
0.86t 

0.95 
0.9lt 

C 

0.1655 
0.1654 
0.042 
0.020 
0.008 
0.005 
0.003 

a:/. 
0.822 
0.818 
0.615 
0.560 
0.538 
0.525 
0.514 

TABLE 2. Inviscid transitions between N-states (N, a,, a:) and ellipse (c, a). 
t Denotes a stable configuration. 
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FIQURE 16. The transition dissipation AB versus a, for the 
N-vortex to annular-vortex transition. 

a0 

and the following analytical expressions for 8 and 2: 

where 

1 8 =  1-u-u~logc+2log(1+c2) ,  
(10.21) 

(10.22) 

As c+ 1,2?+2 log 2. c(a,) determined from A-conservation always has c > 0.6, which, 
according to Snow (1978), implies that the annular vortex is always unstable in any 
transition to multiple vortices (the annular vortex is unstable for c > 4). Figure 16 
shows A 8  for this transition, where = $(annulus). A2? is = $(N-state) and 

5-2 
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always less than zero, and the transition with the least dissipation is between the 
largest (computed) member of the 5-vortex family and a c w 0.7 annular vortex. Also, 
6, 7 and 8 vortices have small AE (possible) transitions to an annular vortex. Since 
the solutions with the smallest value of a, have not yet been found for 4 or more 
vortices, we suspect that yet-smaller A$ annular vortex transitions may occur. Recall 
from $4 our suggestion that the families of N-vortex states pass continuously into 
wavy annular vortices for N > 4 in analogy with the results of Pierrehumbert & 
Widnall (1981) for the street of vortices. The energetic similarities between lerge- 
N-vortex states and certain annular vortices (albeit non-wavy) support our 
hypothesis. 

The energy theory discussed in this section allowed us to restrict the evolution of 
unstable near-equilibrium vortex configurations. Viscous flow evolution turns out to 
be the least restricted - we may only say that the total energy must decrease as the 
initial vorticity distribution diffuses. ‘Nearly ’ inviscid flow evolution allowed the 
possibility for transitions between near-equili brium configurations provided that the 
timescale of the transition is much smaller than the viscous timescale. Viscous effects 
such as the smearing out of the initial distribution are small, of the order of this 
timescale ratio. An alternative and potentially more useful interpretation of nearly 
inviscid transitions associates the amount of dissipation with the incompleteness of 
an inviscid transition. Purely inviscid transitions rarely occur owing to the large 
number of constraints (due to the many conserved global quantities). Only the ellipse 
and the corotating vortices rqay possibly make inviscid transitions. Nonlinear 
calculations have proved that such transitions occur between two vortices and an 
ellipse; There are many more possible nearly inviscid transitions between ellipses and 
two vortices and between annular vortices and five or more corotating vortices. 

11. Relation of stability properties to energetics 
This section is meant to clarify the extent to which energy can determine stability. 

Since there seems to be some confusion about this point in the literature, a detailed 
derivation of the condition sufficient for stability will be presented. 

Consider a system for which a conserved energy function T(v,, v2, . . . , v,,) exists. 
vl, ..., v, are the state variables which completely describe the system. For example, 
in the context of constant-vdrticity vortices, the us can be thought of as coordinates 
of the discretized boundaries. Let 

V k  = V 0 k + f i k ( t ) ,  k = 1,2, ..., ?& (-too), (11.1) 

where V0k corresponds to the stationary or steady state, t is the time and f i k ( t )  is an 
admissible perturbation. Since we have a conservative system, 

T(v,, . . . , v,) = constant = T. 
Meanwhile, T(vo,, ..., von) = constant = To. Expanding p i n  a Taylor series about the 
steady state, we find 

(11.2) 

The steady states have the property that 

(11.3) 
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where the perturbation v" must conserve vortex area. In  other words, the steady state 
is a stationary point of the energy functional with regard to area-preserving 
perturbations. Unfortunately, a translucent proof of this fact does not appear in the 
literature, but a relevant discussion can be found in Arnol'd (1965). Then the second 
term on the right-hand side of (11.2) is zero. The third term determines stability. If 
the matrix a2T/av,av, is positive-definite or negative-definite (i.e. if all of its 
eigenvalues are of the same sign) then it is a suficient condition for stability. 
Definiteness implies that, in a suitable transformed basis, the quadratic term in (1 1.2) 
is a sum of all positive or all negative terms, whose sum can equal F- To only when 
the perturbations are small and remain small for all time. On the other hand, if 
a2T/av,i3v! is not definite, the stationary point is a saddle point of energy, and the 
perturbations could grow arbitrarily large while keeping F- To fixed at its initial small 
value. Of course, this does not prove that instability invariably occurs in this 
situation; it just shows that it is not ruled out. 

The main practical difficulty in applying the energy argument is that one must 
know the properties of the second variation of energy with re8pect to all admissible 
perturbations. This information cannot be rigorously obtained from the knowledge 
of @a,) for the equilibrium states alone. Hence one must invariably resort to some 
indirect argument when attempting to determine whether a given state is a saddle 
point or an absolute minimum or maximum. 

Saffman t Szeto (1980) applied a brief argument of this nature in an attempt to 
determine the value of a, at which the corotating two-vortex state becomes unstable. 
In terms of our notation, their argument can be paraphrased as follows. (Inconsequen- 
tial differences in the form of the argument arise owing to notational differences.) 
First note that has a minimum at a, = 0.066, where the area is a maximum. Thus, 
if we write 8 as a function of area A, the energy curve consists of a high-energy branch 
and a low-energy branch, which meet at the point of maximum area (corresponding 
to a, = 0.066). This situation is represented by the (solid and dashed) lines in 
figure 17. It is implicitly assumed that all equilibrium states for a given area have been 
found, so that there are no other solution branches. Suppose that the higher-energy 
branch were a saddle or absolute minimum of energy. Then, since the energy is 
bounded above for fixed area and J, upon following the energy surface upward we 
would (it is presumed) eventually encounter an absolute maximum of energy.t This 
would be a contradiction, as the maximum would be a new steady state. Hence the 
higher-energy branch must be an absolute maximum, and therefore stable. Without 
making their reasoning explicit, Saffman & Szeto then hypothesize that the lower- 
energy branch is a saddle point, and thus presumably unstable; the point a, = 0.066 
where the two branches join would then be the stability boundary.2 

Our calculations show, in contrast, that part of the higher-energy branch is 
unstable, with the instability setting in at a, = 0.083. This state of affairs is 

t The mathematical underpinning of this argument is weak. It relies on the assumption that 
a functional defined on a given space and bounded above on that space attains a maximum for 
anne member of that space. This assumption is true only if the functional is continuous and the space 
is compact. We note, however, that infinite-dimensional spaces of bounded norm are never compact. 
This is an elementary consequence of the theorem of F. Riesz (DieudonnB 1969). 

calculations, it is difficult to calculate precisely the 
point a, where k? and A reach extrema. For this rewon, Saffman t Bzeto (19801actually predicted 
a, = 0.077 as their stability boundary-; in their table 2 their J is related to A by J = l / d  and 
reaches a minimum at J = 0.8945 or A = 0.3233, corresponding to a, = 0.077. Since they claimed 
that the minimum in J determines the stability boundary, their correct value of a, would be 0.066, 
which we have verified to this number of digits. 

$ Owing to the senetivity of the 3 and 
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FIQURE 17. $(A) for two vortices. The dashed line represents stable symmetric solutions 
(@) = g( -6) ) .  For a, < 0.083 these solutions become unstable (solid line). The dotted line 
represents the hypothetical stable aaymmetric solutions. 

inconsistent with the argument stated above. It is possible that the energy argument 
is essentially correct, but fails only because of an incomplete picture of the solution 
space. In  particular, note that the instability sets in at a, = 0.083 via an exchange 
of stabilities, so that a zero eigenvalue appears at this point. This implies a bifurcation 
to a new solution branch at a, = 0.083 ; because the corresponding eigenmode is not 
symmetric about the line joining the vortex centres, the indicated bifurcation is to 
an asymmetric family of solutions. If this family has higher energy than the upper 
symmetric branch (as sketched in figure 17) then the upper symmetric branch could 
become a saddle past the bifurcation point without contradiction, since the energy 
surface could then be followed upward until the absolute energy maximum associated 
with the asymmetric branch was encountered. This idea could be tested by explicitly 
computing the asymmetric branch. Unfortunately, we have not yet succeeded in 
devising an algorithm to compute these asymmetric states. 

Our numerically determined stability boundary proved to be insensitive to 
resolution. We doubled both the number of boundary points per vortex (to 288) and 
the number of Galerkin functions (to 41) independently and in combination, with no 
noticeable change in the stability-boundary position ; however, the growth rates did 
increase by approximately 10 % . With quadrupled resolution (576 boundary points 
and 81 Galerkin functions) the growth rates increased by only 1 %, indicating 
convergence. As a separate confirmation of these results, we devised a numerical 
algorithm similar to that used by Overman t Zabusky (1982) and used i t  to calculate 
the evolution of perturbed vortices (for more details see Dritschel1985). Starting with 
an a, = 0.08 unstable configuration with its unstable eigenmode superimposed (the 
initial perturbation amplitude being E = 0.01), we found linear and nonlinear 
instability after less than one period of rotation (Dritschel 1985). On the other side 
of the presumed stability boundary, at a, = 0.085, we added a supposedly neutral 
disturbance of amplitude E = 0.0015 (so that a,-€ > 0.083) and ran the calculation 
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out to 10 rotation periods with no sign of instability. We ensured the accuracy of 
this calculation by verifying that the relative changes in J and were less than 
5 x So, we conclude that the initial-value calculations put the stability boundary 
in the range 0.08 < a, < 0.085, in agreement with the matrix method. Finally, we 
note that Overman & Zabusky (1982) claimed to have found a displacement-like 
instability for two vortices when a, = 0.10, which is inconsistent with the results of 
the current study. The explanation is as follows. Their perturbation consisted of 
pushing both vortices inwards by a distance 0.005. This disturbance has the same 
area as the equilibrium state but not the same angular momentum J; in contrast, our 
calculations preserve both area and angular momentum, a requirement imposed by 
Thomson (1883) as well. Furthermore, since area and J are independent functions 
of a,, a simple scale transformation cannot liken the J-changing perturbation to an 
area- and J-preserving perturbation of another (symmetric) two-vortex state. 

Finally, we briefly review what happens for more than two vortices. Three and four 
vortices also go unstable through an exchange of stabilities, suggesting that there 
could be additional aayrnmetric solutions. Five and six vortices, on the other hand, 
become unstable only to oscillatory instabilities. With regards to the energy/area 
diagrams, three and four vortices also have values of a, where # and A  ̂ have common 
extrema (5-8 vortices exhibit no energy or area extrema). Three vortices have two 
such points, while four vortices have just one point (see figures 12 and 13). In  all cases 
the energy/area diagrams show cusps occurring at these special values of a,. This is 
because both da#/dai and da&dai are continuous through these points. However, 
as with two vortices, there is no correspondence between the matrix-determined 
stability boundary and the values of a, at which the extrema are obtained. 

12. Conclusions 
We began by calculating the equilibrium configurations of finite-area corotating 

vortices in an attempt to generalize Thornson’s stability problem. In the process, we 
derived an expansion to fourth order in (1 - a,)/( 1 +a,) which both closely fits the 
exact results and explains the boundary distortion due to the number of vortices. 
Not only was this expansion used to confirm the numerically calculated boundary 
shapes, but, in fact, the numerical results verified the correctness of the expansion 
in all respects. We also found that we could very well approximate the true rotation 
period by a quantity based upon point-vortex ideas. 

Having determined the equilibrium families of solutions, we set out to calculate 
their linear stability. First, we formally derived the stability equation and pointed 
out a symmetry property that significantly reduced the complexity of the problem. 
Finally, we solved this simplified problem numerically and determined the linear 
stability of corotating vortices. We verified that our results agree with Thomson’s 
(1883) in the limit of small vortices and also found seven vortices, known to be 
neutrally stable if they are points, unstable for any finite area. Six or fewer vortices 
behaved quite differently, only becoming unstable for large size. Also, six or fewer 
vortices go unstable via boundary instabilities, which cannot happen for point 
vortices. Point vortices go unstable purely to displacement instabilities; seven or 
more vortices, even if finite-sized, also destabilize in this way. 

A new expression for the energy of a two-dimensional fluid was formulated in order 
to extend the linear stability results. Specifically, energetics restricts the evolution 
of slightly perturbed equilibrium configurations ; consequently, one can examine 
both nonlinear stability (Dritschel 1985) and the possibility of transitions between 
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near-equilibrium states. The latter issue was considered here by considering inviscid, 
‘nearly inviscid ’ and viscous evolution. Inviscid evolution is highly constrained owing 
to the large number of conserved quantities, and we only found a few examples in 
which inviscid evolution could possibly occur. In one example, nonlinear calculations 
(see Dritschel 1985) have confirmed that a certain member of the family of two 
vortices may make a transition to a nearly 6: 1 ellipse - and vice versa. We also 
developed a theory for constraining two-dimensional flow based upon the smallness 
of the ratio of the dynamical timescale to the viscous timescale. We defined a ‘nearly 
inviscid’ transition as one for which this timescale ratio is very small. Such a 
transition would see little in the way of viscous effects such as the smoothing of the 
piecewise-constant vorticity distribution. However, a more fruitful interpretation of 
‘nearly inviscid ’ transitions translates the amount of dissipation during a transition 
into the incompleteness of a correspondingly inviscid transition or a measure of how 
close one can expect the initial state to come to a presumed final or subsequent state. 
Numerous transitions of this nature were found to be possible : between ellipses and 
corotating vortices and between annular vortices and five or more vortices. 

The energy results of this study furthermore suggest that the families of four or 
more vortices pass continuously into a single wavy annular vortex in much the same 
way that the infinite row of vortices oonsidered by Pierrehumbert t Widnall (1981) 
pass continuously into a wavy finite-thickness vortex sheet. Our hypothesis has yet 
to be confirmed, however. 

Finally, in our efforts to resolve energy’s relation to stability, we have found that 
much care has to be exercised. One cannot generally determine the unstable members 
of a family of equilibrium solutions merely by considering this family’s energy and 
area (as defined in Q 10). If other families of solutions are present, any argument based 
upon energy versus area must take into account these other families of solutions - we 
need (at least) a complete picture of the solution space. 

The sequel to this study is presented in Dritschel (1985). There we numerically 
determine the nonlinear stability of N corotating vortices, the ellipse and the annular 
vortex. By tracking the long-time evolution, we capture transitions between various 
members of these families of equilibrium solutions, further confirming the energy 
theory. We find a close connection between energy and nonlinear stability and offer 
a few more words regarding linear stability. 

This work has been submitted in partial fulfilment of the requirements for the 
degree of Ph.D. in the Geophysical Fluid Dynamics Program of Princeton University. 
The author is indebted to his thesis advisor, Dr R. T. Pierrehumbert, for much advice 
in matters of exposition and substance. 

Appendix A: The matrix-eigenvalue problem 
For any variable 7 ,  let 

T~ = unperturbed basic state, 

T‘ = perturbation, 

T = T,,+T’ = entire quantity, 

7^ E time-independent part of 7’ = 7^efft, 
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where CT is a generally complex growth rate to be determined as an eigenvalue. The 
entire velocity in the rotating frame on the j th  vortex is 

where 

+Goj@) (sin(a+O,), -cos(a+O,)). 

Equation (5.8) can be rewritten as 

where 

(the statement that the unperturbed boundary has no flow across it) has been used. 
uOr and Uoe do not depend on the vortex j - only upon a. From (5.3) we take Qj(a) 
as 

M 

m-1 
0,(4 = go(a)Yj(4  where Y,W = x Crn’Ab(4. (A 6) 

Also, we introduce the following notational abbreviations : 

Q , ~ ( B ;  a) = cos(a+e,)--sin(a+e,). dYOk 

dB de J 
Equation (A 3) can then be rewritten as 
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Equation (A 4) is now rewritten in terms of the y,, and we define 

e, + 0 unless M = 00, whereupon the disturbances are fully representable in terms 
of the orthonormal set of basis functions (9,). For practical reasons, all the q5m, 
m = 1,2,  . . . , cannot be kept. The Galerkin approach to keeping only a finite number 
M of terms is to make the error e, orthogonal to each of the basis functions: 

This requirement yields MN equations for the same number of unknowns: Gn3, 
n = 1,  ..., M ,  j = 1, ..., N. This yields (5.12) after introducing the following 
definitions : 

The result restated here is 

N M  

aC,J = AmnJkCmk, j = 1,  ..., N ,  n = 1,  ..., M .  (A 12) 
k-1 m-1 

Appendix B. Point-vortex stability and the stability of eight vortices 
This appendix presents a drastically simplified derivation and explanation of the 

stability of any number of point vortices. This simplification came as a result of the 
symmetry properties outlined in $6. It also clears up some further errors made by 
Thomson. It was pointed out during the preparation of this manuscript that the result 
below was first derived by Havelock (1931). 

Equations taken from and sections refered to in Thomson (1883) will be surrounded 
in curly brackets. Then equations { 107) and { 11  1) using the second equation in section 
(51) are (in non-dimensional form) 

x k  (k + s), ",-C - 
( N -  1) ( N -  1 1 )  - 

dt 6 k-1 l - c k s  

where x, is the perturbation radial displacement and 6, is the perturbation angular 
displacement of the 8th vortex, while cks = COB (Bx(k-s)/N). The first terms on the 
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right-hand sides of these equations come from sums to be evaluated later (Thomson 
claimed to have evaluated them by trigonometry). Thomson further requires 

N N 

8-1 8-1 
z x s = o ,  z e , = o  (B 3) 

(see the end of section (48)). The first expresses the conservation of angular 
momentum, while the second simply ignores the neutral mode, which rigidly rotates 
the entire configuration. 

The symmetry arguments of 56 (especially (6.10)) along with (B 3) suggest 

2, = a p e ,  e, = pwp8, p = 1 , 2 ,  ..., ~ - i ,  (B 4) 
where w = cos ( 2 x / N ) + i  sin ( 2 4 2 9  and the real part, is intended. p cannot be a 
multiple of N, because this would violate (B 3). p indicates the symmetry of the mode, 
and is analogous to the I introduced in 56 (p = Z- 1). Substituting this into (B 1) and 
(B 2 )  yields 

(B 5 )  dB - a(i(N- 1) ( N -  i i ) - ~ , ) ,  
da 
dt - = p(:(P-l)-fl,), dt - 

where 

k 9 s  k + e  

because the sine series is exactly zero and k - 8 can be regarded as a dummy variable. 
Hence (B 5 )  is independent of 8 ,  aa required. So, 

d2a 
dt2 
-- - aia,  ui = (t(N2-1)-Sp)(i(N-i)(N-1i)-Sp). 

Moreover, a simple analytical expression for S, has been found : 

S, = i ( N -  1 ) ( N -  5 )  + (p - 1 ) (p + 1 - N )  . (B 8) 

Specifically, 8, =:(NZ-l), S, = + ( N - l ) ( N - 5 )  and &-(N-l) = ~ ( N - l ) ( N - l l ) ,  
which accounts for the terms in (B 1) and (B 2 ) .  This sum has the property 8, = SN-,, 
so that up = uN-,, and there are at most [$VI distinct eigenvalues corresponding to 
the symmetries p = 1,2, . .., (here [ 3 means ‘integer value of’). The final 
expression for ui is 

valid for all N. Dimensionally, this must be multiplied by rn2/47c2r0 in Thornson’s 
notation (rn E the strength of one vortex, T = the radius of the circle they all lie upon 
in equilibrium). 

Thomson makes a few mistakes in his treatise with regards to certain eigenvalues 
which violate the constraintsin (B 3). The eigenvectors indicate that these disturbances 
are symmetric and are therefore not allowed. The largest negative eigenvalues listed 
for five or more vortices by Thomson are disallowed by the constraints. 

The neutral mode for N = 7 vortices comes from p = 3 and 4 (I = 4 and 5) ,  and 
the numerical results agree with this. Eight vortices have two unstable modes: 
u: = 32 (every other vortex is displaced the same way) and ui = 15 (complicated 
eigenvector). In the numerical calculation, the two growth rates are r4 = 5.077569 
and r8 = 3.476346 for a,, = 0.995. The conversion from r to u is 

u; = (p - 1 )2 (p + 1 - N)2 - ( N -  1)2 ,  (B 9) 

N - 1  
up = - 

2.IT pp. 

The numerically computed uZp are 31.99986 and 14.99969 respectively. 
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To achieve these excellent results, the boundary shapes for small vortices had to be 
calculated very accurately. The approximate results of $3  were used as the first guess 
in the iterative procedure to find the precise boundary shapes; the error in the 
computed shapes was less than 5 x lo-'. 

Finally, the numerical code had to be very careful to accurately calculate the 
integrals involving the singular terms b j k x  and bjkY in (A 11). These integrals are 
functions of the angle a, and the integral is over 8. a must be evaluated on the regular, 
coarse grid (which has approximately equal angle spacing) and 8 must be evaluated 
at  the four Gaussian points between each coarse grid point. The singularity is of the 
form l / ( a  - O ) ,  and so does not contribute if evaluated in this way. The coarse a-points 
are then interpolated onto the Gaussian grid, whereupon the calculation continues. 
The 7- and 8-vortex calculations serve as a good check of this method. 
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